

2pSC18. The relation between focus effects in production and exemplar locations in perception for stop types in English, Japanese, and Korean.

Eric Oglesbee & Kenneth de Jong

Department of Linguistics, Indiana University

Main Points

- 1. Having a difference in production does not indicate the degree to which that difference is utilized in perceptual classification.
- 2. The presence or absence of lexical focus effects in production is an inconsistent indicator of cues used in perception.

Background

Multiple Acoustic Dimensions

• Different languages can manifest phonologically similar contrasts in phonetically different ways (Shimizu, 1989).

English, Japanese, and Korean Labial Stops

- English: 2 categories (p/b). Voice Onset Time (VOT) considered primary cue (Lisker and Abramson, 1964).
- Japanese: 2 categories (p/b). Closely spaced VOT distributions with consistent F0 differences reported (Shimizu, 1989).
- Korean: 3 categories (fortis/lenis/aspirated). Overlapping VOT distributions and F0 differences reported (Han & Weitzman, 1970; Shimizu, 1989).

Lexical Focus

• Can be used as a diagnostic tool for identifying contrastive acoustic dimensions (de Jong & Zawaydeh, 2002).

Research Questions

- 1. What acoustic cues do listeners use for determining best exemplars?
- 2. How does perceptual usage relate to differences between categories in production?
- 3. How does lexical focus effect the production of the primary cues used for perception?

Method: Perception Experiment

Subjects

• 3 native-speakers each of English, Japanese, and Korean

Test Stimuli

• Six-dimensional stimulus space containing 229,075 stimuli:

Dimension:	VOT	F0 Register	F0 Initial Contour	Vowel Amplitude Contour ("Ramp")	Formant Transitions	Burst Strength
# of steps:	17	7	5	11	7	5
Range of values	-40 me prevoicing to	60% to 130% of re- sidual contour after subtracting mini- mum value		Initial value from 0.0 to 1.0 of vowel midpoint intensity (rms)	0 to 30 ms removed	0.25 to 0.45 vowel midpoint intensity (rms)

Task: AMBEL

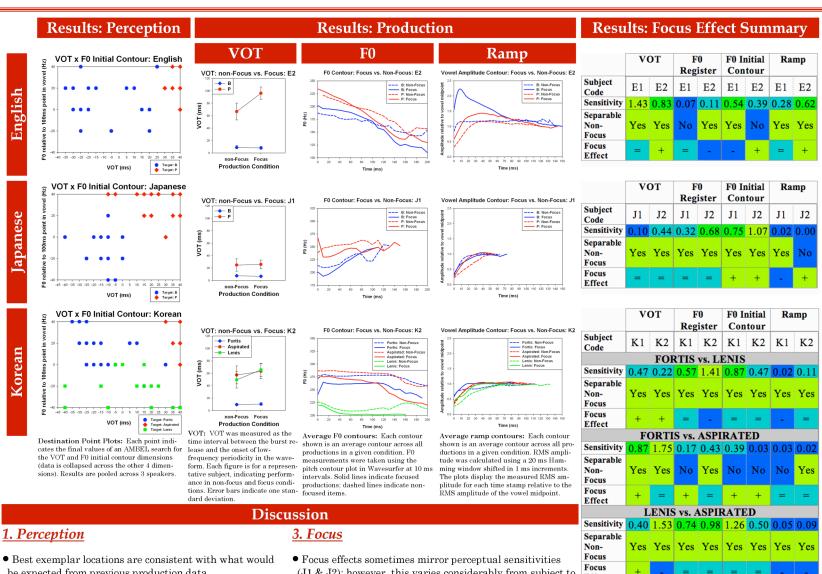
• Regions of best exemplars and sensitivities to stimulus dimensions were identified using AMBEL (Oglesbee & de Jong, 2007).

Method: Production Experiment

Subjects

• Same participants as perception experiment (non-focus data only available for 2 subjects per language)

Elicitation Procedure


• For each language, two frame sentences elicited non-focus and focused productions of a set of test words (15 productions per category for English/Japanese; 24 for Korean).

Acoustic Measurements

- VOT: voicing lag measured (ms) from burst release until onset of periodic voicing
- •F0 Register/Contour: Measured from vowel onset in 10ms intervals.
- Ramp: Intensity (rms) in first half of vowel measured relative to vowel midpoint.

Presented at 154th meeting of the Acoustical Society of America New Orleans, LA 27th November – 1 December, 2007

Kenneth de Jong (kdejong@indiana.edu) Eric Oglesbee (eoglesbe@indiana.edu)

1. Perception

- be expected from previous production data.
- F0-to-VOT relationship for b/p in Japanese is opposite of fortis/lenis in Korean.

2. Production

- Production results consistent with previous studies.
- Based on separability, it is not obvious which cues predominate in perception.

- (J1 & J2); however, this varies considerably from subject to subject (E1 & E2).
 - This means that focus induced production variability (or lack thereof) is not a consistent predictor of perceptual cues.
- Just because something is consistently different in production, that does not mean it is important for perception.

Separable Non- Focus	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Focus Effect	+	-	=	-	=	=	-	-
Dimensional tions in a mul tener is to a st tivity scale rat	tidimen imulus nges fro	sional s dimens m 0.0 to	pace, Al ion for a 2.0.	MBEL i: a given o	ndicates categorie	s how se cal contr	nsitive rast. Th	a lis- e sensi-

Separable non-focus: The separability of production dimensions in nonfocused productions was determined by inspection.

Focus effect: "+". "-", and "=" are used to mark whether or not focus induced an expansion (+), contraction (-), or no change (=) in separability of production dimensions. Effects were determined by inspection

See Handout for References

focus: patterns of variation in Arabic vowel duration, Journal of Phonetics, **30**, 53-75 $fp^{\rm b}$, $t^{\rm b}$, $k^{\rm b}$ /, Phonetica, **22**, 112-128. s: Acoustical measurements, Word, **20**, 384-422 stimulus spaces, J. Acoust. Soc. Am. **122** (**4**), EL101 – EL106. ord, 20, 384-422 . Am. 122 (4), EL101 – & Xawaydeh, B. (2002) Comparing stress, lexical focus, and segmental focus: pa & Weitzman, R.S. (1970) Acoustic features of Korean /P,T,K/, /p,t,k/ and $\rho^{\rm h}$, $t^{\rm h}$, $k^{\rm h}$ & Abramson, A.S. (1964) A cross-language study of Voicing in initial stops: Acoust E. & de Jong, K. (2007) Searching for best exemplars in multidimensional stimulus s de Jong, K... Han, M.S. & Lisker, L. & Oglesbee, E

Onsei kagaku kenkyu Vol.

of Stops,

Contrasts

of Voicing

Cross-Language Study

A (6861)